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Abstract— The crucial step in Adaptive Optics feedback
control is the reconstruction of the wavefront. For a classi-
cal real-time feedback control a (Shack-)Hartmann wavefront
sensor is used and that makes the wavefront reconstruction
problem linear. In this paper a new methodology is proposed
to reconstruct the wavefront for real-time AO control using
the complete intensity measurement provided by the sensor
and not just their centroids. In addition to an outline of
the new wavefront reconstruction method, its performance is
illustrated via a numerical simulation study. The advantages of
the new method are highlighted by (a) integrating the method
in a classical AO feedback loop and (b) comparing the new
wavefront reconstruction method in a simulation study with the
classical centroid algorithm based wavefront reconstruction in
real-time classical AO feedback control.

I. INTRODUCTION

High resolution imaging with for example telescopes,
microscopes or lithography machines is often hampered by
the presence of aberrations in the wavefront. Such aberrations
are induced in various ways. For example in astronomical
observations with ground based telescopes, the aberrations
are due to atmospheric turbulence, temperature gradients,
etc. Adaptive Optics (AO) was proposed more then half
a century ago [1], but is now more and more being used
to correct these aberrations in real-time. An AO system
consists of a sensor measuring information from which the
wavefront aberrations can be reconstructed and an actuator to
correct these aberrations. For classical real-time AO control
where the bandwith of the feedback controller is far off the
first resonance frequency of the deformable mirror, used as
an actuator, the key problem is the reconstruction of the
wavefront. For that purpose, a (Shack-) Hartmann wavefront
sensor is the preferred device since it enables the formulation
of the wavefront reconstruction problem as a linear (least
squares) problem.

In this paper we restrict ourselves to the Hartmann
wavefront sensor for simplicity and brevity although the
results are extendable to the Shack-Hartmann architecture.
The Hartmann wavefront sensor consists of an array of
apertures that sample the incoming wavefront. The centroid
algorithm then provides an approximation of the spatial
slope of the wavefront for each aperture. This algorithm
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computes the center of mass of the intensity measurements
collected by a detector (e.g. CCD camera) thus losing some
of the information present in the intensity patterns. This
will in general cause a loss in accuracy of the wavefront
reconstruction results.

In order to preserve the main advantage of the centroid
based wavefront reconstruction, that is the linearity of the
wavefront reconstruction problem, but to make direct use
of the measured intensities as in [2] without first approx-
imating the spatial slopes, a new wavefront reconstruction
method is presented in this paper. The method is based on
the integration of two principles. The first is a physical
principle where we perform a distributed linearization of
the relationship between the local wavefront aberrations and
the intensity measurements of the aperture that “sees” this
local wavefront. The second is a numerical principle on the
use of B-splines to parametrize and reconstruct the unknown
wavefront. The methodology of parametrizing the wavefront
in the B-spline wavefront is based on our recent work in [3],
[4] .

The paper is organized as follows. The new method is
described in Section III. A simulation study of the new wave-
front reconstruction method is presented in Section IV. Here
a comparison is made with the classical modal reconstruction
method [5] which uses slope measurements provided by
the centroid algorithm [6]. The comparison is made in an
open-loop and closed-loop configuration. For the classical
AO feedback control it will be assumed that the deformable
mirror is perfect and that the wavefront aberration is static.
Such a classical AO control methodology described in a
control engineering framework is e.g. given in [7], [8].
Finally we end this paper with some concluding remarks.

II. THE ADAPTIVE OPTICS CONTROL PROBLEM

To explain the principle of AO, and the role of wavefront
reconstruction in the closed loop, we will briefly outline
an AO application in an astronomical context. For that
purpose consider the schematic drawing in Figure 1. When
light from a distant star arrives at the outer layers of the
atmosphere, it has a perfectly plane wavefront. However, this
plane wavefront will reach the telescope deformed as the
turbulent atmosphere will introduce time and space varying
optical path length differences. This gives rise to a turbulence
induced phase profile φ(r, t), where r ∈ R2 specifies the
spatial position in the telescope aperture and t denotes time.
The AO system tries to cancel out these wavefront distortions
by actively introducing optical path length differences of
opposite sign.
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Fig. 1: Schematic representation of an AO system, and its
main components.

An AO system is typically composed of the following
components – a wavefront sensor (WFS), a wavefront correc-
tor element to influence the phase and a feedback controller.
In most systems, like the one depicted in Figure 1, the
wavefront corrector element is a deformable mirror (DM).
For the ease of discussion we will simply assume that the
active component is a DM.

Light that “enters” the AO system is first directed to the
DM. By changing the mirror shape in real-time, the DM is
able to apply a time-varying phase correction φdm(r, t). The
residual phase error is the difference between the turbulence
induced wavefront and the applied correction, i.e. ε = φ −
φdm. After applying the wavefront correction, a beam splitter
divides the reflected light beam in two parts. The first part
of the corrected light beam leaves the AO system and is
used by the science camera for object image formation. The
remaining light is directed to the WFS, which provides quan-
titative information about the residual wavefront. Based on
the WFS measurements s(·), the controller has to determine
the actuator inputs u(·) to the DM. The controller should
adapt the input signal in such a way that the DM cancels out
most of the distortions. The latter degree of compensation is
specified in terms of control criteria, like the so-called H2

criterium [8].
By counteracting the wavefront distortions, AO is able to

reduce the degrading effect of atmospheric turbulence on the
imaging process. The goal of an AO system is to keep the
wavefront of the light reaching the science camera to be
as flat as possible. In this way, the corrected image can be
recorded without being spread out when using long exposure
times. By using AO, large ground-based based telescopes
may reach close to diffraction limited performance in the
near infrared [9], [10].

III. WAVEFRONT RECONSTRUCTION

In this paper we consider the AO configuration as depicted
in Figure 1. For a wavefront sensor, we consider a Hartmann
array. This Hartmann Wavefront Sensor (HWS) consists of

an array of apertures equally spaced in an otherwise opaque
screen. The wavefront is sampled by each subaperture at the
aperture plane and the transmitted beams are collected by
a detector, like a CCD camera [2]. The classical approach
uses the recorded intensities behind each aperture to ex-
tract an approximation of the local spatial gradient of the
wavefront. In this paper the novel idea is to propose the
use of all recorded intensity measurements in the wavefront
reconstruction. In the following subsection we derive the
model that is used for relationship between the wavefront and
the intensity measurements, its local linearization, modeling
of the wavefront via B-splines and constrained least squares
solution. In the scope of this brief paper, we restrict to
presenting only a centralized solution. But following our
work in [11] this method has the potential to be distributed
and hence to become useful for large scale AO.

A. General intensity-based phase retrieval algorithm

The complex field of the wavefront immediately after be-
ing transmitted by the Hartmann hole array can be described
by its amplitude A(x, y) and its phase distribution Φ(x, y).
The complex field U(x, y, z) can then be defined in the
aperture plane (z = 0) and detector plane (z = L) as follows:

U(x, y, 0) = A(x, y) exp(iνΦ(x, y)) (1)

U(x, y, L) = F−1 [F [U(x, y, 0)]H(fx, fy)] (2)

where H(fx, fy) represents the Rayleigh-Sommerfield trans-
fer function [12] (which depends on the spatial frequencies
fx and fy) and ν represents the wavenumber.

The phase Φ can be parametrized as a linear combination
of K general basis functions fk.

Φ(x, y) =

K∑
k=1

αkfk(x, y) (3)

These coefficients αk can be estimated by minimizing
the error between the intensity of the field given by the
model and the measured intensity. Let F (xi, yj) represent
the measured intensities of each pixel (i, j) at the detection
plane and let I(xi, yj , L) = |U(xi, yj , L)|2 be the intensity
given by the physical model also evaluated in pixel (i, j).
With these two quantities one is able to define a simple
cost function (Eq. (4)). For the sake of simplicity, the plane
defined by the variables (x, y) will be sampled in such a way
that (xi, yj) correspond to the center of the pixel (i, j).

J =
∑
i,j

[F (xi, yj)− I(xi, yj , L)]
2 (4)

In [2] a nonlinear least squares optimization procedure
was performed to estimate the coefficients αk that describe
the phase distribution (3). However, as presented in the next
section, a linearisation can be made to simplify the problem.



B. Formulation of the linearised problem

Firstly, both F (xi, yj) and I(xi, yj , L) in (4) are vector-
ized such that, given a total of M pixels, two vectors f and
iL ∈ RM×1 are created. Thus, a new cost function Jvec can
then be defined.

Jvec = ||f − iL||22 (5)

=

M∑
m=1

(F (m)− I(m,L))
2 (6)

Note that each element m of the newly created vectors has
a direct mapping to a point (xi, yj) in the Cartesian plane.

In order to find the coefficients that minimize Jvec using
a linear method, we linearise the intensity term defined at
a certain pixel IL(m) = I(m,L) using a first-order Taylor
series around an arbitrary vector of phase coefficients α̃. In
this case we will use α̃ = 0.

IL(m) = U∗L(m)UL(m) (7)

∂IL(m)

∂α
=

[
∂U∗L(m)

∂α
UL(m) + U∗L(m)

(
∂UL(m)

∂α

)]
(8)

The truncated first-order Taylor can then be expressed as
follows:

IL(m) ≈ IL(m)α=α̃ +

[
∂U∗L(m)

∂α
UL(m)+

+ U∗L(m)
∂UL
∂α

(m)

]
α=α̃

α

= c0m + c1mα

(9)

where

∂UL(m)

∂α
=
[
∂UL(m)
∂α1

· · · ∂UL(m)
∂αK

]
∈ R1×K

∂UL(m)

∂αk
= F−1 [F [U0(m)iνfk(m)]H(m)] (10)

Notice that the index m pertaining to the transfer function
H(m) does not refer to a mapping between a given pixel and
a point in the Cartesian plane but to a point in the spatial
frequencies domain. The details about the implementation
can be found in [13].

The terms c0m and c1m in Eq. (9) are computed for each
m = 1, ...,M in order to define c0 = [c01, ..., c0M ]T ∈
RM×1 and C1 = [c11, ..., c1M ]T ∈ RM×K . This new
formulation is helpful in order to present the new cost
function Jlin for the linearized problem:

Jlin = ||f − (c0 + C1α)||22 (11)

The optimal solution for this problem is then:

α̂ = (C1
TC1)−1C1

T (c0 − f) (12)

The final step needed to present the algorithm is to present
the spline framework which is done in the next section.

C. Multivariate simplex B-splines

The nomenclature used to define these basis functions will
follow closely the one presented in [4], [3].

To provide a brief summary regarding the way these
basis functions are created an initial clarification regarding
all the terminology used is necessary. The splines used in
this application are multivariate as they are defined in a
simplex in a 2 dimensional space. A simplex is, in the 2-
D case, a triangle which means that it can be defined by 3
non-degenerate vertices (v0,v1,v2) ∈ R2×3. Furthermore,
to evaluate the value of the spline efficiently we use the
barycentric coordinate system.

Given a certain point x = (x, y) belonging to the Cartesian
plane a barycentric coordinate in R3 can be determined as
follows:

[
b1
b2

]
= V−1

[
x
y

]
(13)

b0 = 1− b1 − b2 (14)

where the transformation matrix V can be defined as

V =
[
v1 − v0 v2 − v0

]
(15)

Using the barycentric coordinates, the following equations
completely define the basis functions Bdκ of a certain degree
d defined in a certain simplex t. This simplex belongs to
a more general partition of the domain in non-overlapping
simplices, a triangulation, represented by T .

(b0 + b1 + b2)d =
∑

κ0+κ1+κ2

d!

κ0!κ1!κ2!
bκ0
0 bκ1

1 bκ2
2 (16)

where |κ| = κ0 + κ1 + κ2 = d and κ0, κ1, κ2 ≥ 0

Bdκ(b(x)) =

{
d!

κ0!κ1!κ2!
bκ0
0 bκ1

1 bκ2
2 ,x ∈ t

0 ,x /∈ t
(17)

Weighting the basis functions yields a B-form polynomial
p(b(x)) of the form

p(b(x)) =

{∑
|κ|=d α

t
κB

d
κ ,x ∈ t

0 ,x /∈ t
(18)

One of the main advantages of using B-splines is the fact
one can force continuity of order r such that all m-th order
derivatives, with 0 ≤ m ≤ r, of two B-form polynomials
defined on two neighbouring simplices are equal on the edge
between the simplices.



In [3], a general method was created to guarantee con-
tinuity between all the common edges of neighbouring B-
form polynomials. The method yields a smoothness matrix
H that establishes a relationship between the coefficients of
the neighbouring polynomials:

Hα = 0 (19)

After this brief explanation concerning the B-splines, all
the fundamental concepts and definitions necessary to solve
the problem in Eq. (11) are now presented which leads
us to introduce the local optimization problem for a single
subaperture.

D. Subaperture local problem

In this phase retrieval method, we propose that both the
aperture and detection plane are divided in N (where N
is the number of subapertures) equal and adjacent square
regions each of them encompassing the entire subaperture
and the corresponding square space (subimage) in the de-
tection plane. We will use the data from the subimage
on the detection plane to estimate the phase only in its
corresponding subaperture.

Provided that the diffraction effects on the detection plane
are small, one can guarantee that the propagated beams
from one subaperture have a minimal effect in the subimage
corresponding to another subaperture. Therefore, the linear
optimization procedure defined in (11) can be applied locally
and almost independently to estimate the phase distribution
in each of the subapertures.

Simplex 2

Simplex 1 Simplex 1

Simplex 
2

Simplex 3

Simplex
4

Fig. 2: Close-up on one of the subapertures. In the left (right)
subaperture a type I (II) triangulation was defined using 2
(4) simplices per subaperture

The local areas that have been defined in both planes
are square whereas the B-splines are defined in a simplex
with a triangular shape. Therefore, the phase distribution was
parametrized using J triangles that divide the subaperture.
An example with 2 (type I triangulation) and 4 (type II
triangulation) can be seen in Figure 2.

In order to ensure continuity in the same subaperture one
may enforce the continuity constraints (Eq. (19)) inherent
to the spline framework. The word may is used as these
constraints are not nearly as important as the ones that
connect the different subapertures which will be presented

in the next section. The formulation of the local problem is
presented in (20) for a certain aperture n.

min

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
f

n
1
...
fnJ

−
c

n
0,1
...

cn0,J

−
C

n
1,11 . . . Cn

1,1J
...

. . .
...

Cn
1,J1 . . . Cn

1,JJ


α

n
1
...

αnJ


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

2

s.t. Hlocal

α
n
1
...

αnJ

 = 0

(20)

E. Global optimization

The natural extension to Eq. (20) is to perform this
optimization for all the subapertures simultaneously. For the
optimization to be successful it is not enough to purely
replicate the procedure presented in Eq. (11). Additional
boundary constraints must be inserted in addition to those
that provide continuity between the two neighbouring poly-
nomials in each of the subapertures.

Let us provide an example. Take, for instance, the upper
simplex in the left subaperture in Figure 2. Assuming that
the adjacent subapertures have the same simplex layout,
continuity constraints should be imposed to connect the
aforementioned simplex with the lower simplices of the sub-
apertures which are located upwards and to the right. These
constraints should also be included in the smoothness matrix
H so as to generate a global problem for N subapertures.

min

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
 f

1

...
fN

−

 c

1
0
...

cN0

+ Cglobal
1

α
1

...
αN



∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

2

s.t. Hglobal

α
1

...
αN

 = 0

(21)

where,

Cglobal
1 =

C
1
1

. . .
CN

1


The solution for this problem can be found in an iterative

or direct way as described in [3].

IV. SIMULATION RESULTS

A. Demonstration of Operation of the new method

In this section, the performance of our our method is
compared against a modal wavefront reconstruction algo-
rithm presented in [5]. In the latter method, the wavefront
is parametrized using Zernike basis functions and their
weighting coefficients are estimated (using a least-squares
approach) by fitting the slope measurements to the derivative
of the previously parametrized wavefront. The centroid algo-
rithm used to compute the slope measurements is presented
in [6].
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Fig. 3: (a) Reconstructed phase distribution for α4 = 0.1λ
and (b) its error (both normalized to the wavelength λ) when
the intensity distribution was subject to noise (σ = 4×10−4)

The setup simulated is similar to the one presented in [2].
Each hole has a side length of 200 µm and is separated from
the adjacent hole by a distance of 562.5 µm. The propagation
distance (i.e., the distance between the aperture plane and the
detection plane) is 10 mm and the wavelength is λ = 638nm.
A grid of 10 by 10 subapertures was used to obtain these
results.

White noise is can be modelled using a zero-mean Gaus-
sian distribution with a certain standard deviation σ. In
this setup the noise was added to the normalized intensity
measures (with values between 0 and 1) and had a standard
deviation of σccd = 4× 10−4 based on the specifications of
a commercial camera.

A 4th order Zernike mode (according to Noll notation
[14]) was used to model the incoming wavefront. The
polynomial functions of the B-splines were chosen to have
a degree d = 2 and subject to continuity constraints of order
r = 2. A type II triangulation partitions the subapertures as
per Figure 2.

The results presented in Figure 4 show that our method
yields an RMS error approximately 1 order of magnitude
lower in relation to the modal reconstruction method in the
presence of noise for aberrations smaller than λ. In the
noiseless case and for aberrations smaller than 0.1λ this
method is able to provide an improvement of 2 orders of

magnitude. For aberrations larger than 10λ, the diffraction
pattern pertaining to a subaperture will affect the intensity
pattern originating from other subapertures. In that case, our
locality assumption is not verified and the method does not
yield good results. It performs even poorer than the modal
reconstruction for α4 ≥ 100λ.
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Fig. 4: Comparison of the RMS of the wavefront recon-
struction between the new spline based WFR method and
the modal reconstruction method (in open-loop). It is clear
that due to the influence of the noisy measurements the RMS
values reach a threshold when the aberrations get smaller:
around 1.5×10−3λ for modal reconstruction and 2.5×10−4λ
for spline-based reconstruction. Other experiments were done
with different incoming wavefronts and the results were
similar to the one presented above.

For incoming wavefronts modelled using high frequency
Zernike modes the method presents results with the same
accuracy as presented in Figure 4 provided that the degree
of the spline functions is increased. That is due to the fact that
the Zernike basis functions have a polynomial term in terms
of the radius. The degree of that term is called the radial
degree and in order to approximate it correctly the splines
polynomials must have at least the same degree. For example,
if we wanted to approximate Zernike modes accurately from
the 7th until the 10th (radial degree equals 3) we would have
to choose at least a spline degree d = 3. To filter out the
noise the continuity constraints should be of the same order,
that is, r = 3.

B. Closed loop comparison

So far, the results presented only concerned the open-
loop reconstruction where no feedback loop nor deformable
mirror is included. In this section, the methods used pre-
viously for wavefront reconstruction were integrated in a
classical AO feedback loop (Figure 5) in order to analyse
the convergence properties and sensitivity to noise of the
wavefront reconstruction error.
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Fig. 5: Simplified representation of a feedback loop used in
Adaptive Optics

The closed-loop setup includes the Hartmann sensor and
the reconstruction algorithm with the same characteristics
specified in Sec. IV-A. It also includes the deformable mirror,
which in this case is assumed to be perfect, meaning that
it will take the exact shape of the reconstructed wavefront.
Furthermore, a delay was added in the loop simulating the
time consumed by the computations and communications in
a real-time implementation. To counteract the effect of the
delay a PI controller was also integrated and tuned in order
to minimize the effect of the delay.

Using a wavefront characterized by an astigmatism aberra-
tion with a coefficient of 0.1λ we obtain the results presented
in Figure 6.
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Fig. 6: RMS error evolution for a classical AO setup
comparing the modal and the spline-based reconstruction
method.

With this approach the reconstruction error converges to a
lower RMS value and is less sensitive to noise than the closed
loop with modal reconstruction.In the presence of noise the

modal reconstruction method can not achieve the threshold
for small aberrations in open-loop that is visible in Figure 4
while our method can.

V. CONCLUSIONS

With this method a successful replacement for the classical
slope measurement phase retrieval techniques is presented.
This linear method provides an improvement of approx-
imately one order of magnitude in terms of RMS error
regarding the classical methods for aberrations smaller than
λ. Besides that it is capable of approximating high frequency
Zernike with the same accuracy as presented in Figure 4 for
the low frequency mode, provided that the degree of the
approximating splines is chosen to match that of the radial
degree of the Zernike mode. Moreover, given the structure
of the Hartmann sensor the problem has the potential to be
solved in a distributed way.

In an AO control perspective this method can be easily
implemented in real-time feedback setups given its linearity.
Besides that, integrating this novel method in a classical
AO feedback loop will yield a lower reconstruction error in
all the cases mentioned in the previous paragraph provided
that the deformable mirror has sufficient resolution to depict
accurately the reconstructed phase.

This method can be also applied to a phase reconstruc-
tion using intensity measurements from a Shack-Hartmann
wavefront sensor.
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